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Solutions of the hyperbolic equation of turbulent flow-
" in the near ground layer of air with indifferent strati-

fication are investigated. As an example the diffusion of
O smoke at ambient temperature from a chimney. is examined.

The generalised expression for diffusion is indicated for
cases with arbitrary temperature stratification of the air

Since the diffusion of a substance in a turbulentnt
medium comes about because of turbulent fluctuations of wind.
velocity, the size of which is limited (and under the actual
conditions in the lowest layers of the atmosphere is rather
small) the propagation of the substance in the atmosphere
takes place with a limited velocity and in a number of cases

* (e.g., after the release of an instantaneous point source)
".the propagation front of the substance can be observed.
For describing such cases the common expression fox diffu-
sion having a parabolic character is shown to be inappro-
priate. In our earlier paper [I] a system is investigated
in which allowa.nce is :learly made for the final size of the
turbulent fluctuations, and to describe tu-bulent diffusion
we derive a system of equations of the hyperbolic type.
The simplest version of such equations for the case of
diffusion in the vertical direction z only, is of the form

= a.(q2 - - . , = a (q,'- qa) + Z-IUq2,...(l)

where qj and q2 are the probability densities for the co-
ordinate z of the diffusing particles moving respectively
upwards and downwards; t is time; u is the size of the tur-
bulent fluctuations; z the velocity components; a is the
frequency of change of direction of movement by the diffusing
particles (frequency of "dispersion"). An analagous equation

* was proposed earlier in the work of V. A. Fok B. I. Davydov.
and E.*S. Lyapin quoted in reference Ei] and also in the
article by S. Goldstein [2] published in 1951, and is ex-
tremely close in content to Fok's work in 1926. Equations (1)

* correspond to the description of turbulent movements in the
direction z as the aggregate of "streams" having flow rates
u and -u, the diffusing particle transferring £fom streams
of one type to streams of another type on an average with
frequency a.

Examining only stationary turbulence we may consider
the values u and a independent of time t. Introducing the
density of the particles q = + qa and the density oi the
turbulent.particle stream Q = (q1 - q2) we reduce-equations-
(1) to the form

0 *-2



j a+ = + 2aQ e e eo (2)at oz '6 "tz

According to the first of these equations it is poss-
ible to put q = r-, Q = -. where 7(z,t) will have the mean-

ing of an integral function of probability distribution for
the co-ordinate z of the diffusing particle. The second
equation (2) takes the form of a telegraph equation (3):-

3ua- a a - 2a- =0. 0 .... (3)

UZ Oz t~ Uat

The problem consists in t.e determination of the co-
efficients of this equation u(7) and a(z) for different con-
ditions in the atmosphere and in solving equation (3) with
given initial and boundary conditions.

Paper [I] examined the case of diffusion in the field
of homogeneous turbulence (u and a constants) in the lowest
layer of the atmosphere with indifferent stratification.
In the p.esent paper we shall examine diffusion in the
ground l:,yer of the atmosphere withindifferent stratifica-
tion in more detail than was done in reference El1; we
shall define the determination of the Riemann function for
equation .(3) in this case and examine an example of prac-
tical. importance, i.e. the diffusion of smoke at ambient
t6emperature from a chimney. Furthermore, we shall show
how to determine the coefficients u(z) and a(z) for the
ground layer of the atmosphere with arbitrary temperature
stratification and analyse equation (3) for these conditiont

S1. Diffusion in a Thermally Homogeneous Ground Layer
of the Atmosphere

The stationary turbulent process in the ground
layez of the atmosphere with indifferent stratification is
characterised by a unique dimensional parameter, -the
friction velocity v*, so that every parameter of turbulence
haying the dimensions of velocity must be proportional to
v*, the characteristic dimension of length must be propor-
tional to height z, and the characteristic dimension of tim
must. be proportional to Consequently in this case

•*

u Xv, a = A.-4
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where X and A are numerical constants. The constant X
should be determined from experiments as a ratio of the mean
square value of the vertical fluctuations of velocity to v*;Q the experimental data in our arrangement shew that the val~ui
of X is near to unity. The constant A may be determined by
taking advantage of the steady-state solution of equations
( (2), which has the form

Q=const, q(z2) - q(zj) = 2 g-

%2V* Z2

We note that the coefficient in the logarithmic
• Xay*

formula for q(z) must, as we know, equal - where x is the"xv*

Karman constant. Hence A.= 2-" Introducing into equation*

(3) the dimensionless variables

h,- - . 5)

O where h is some characteristic height, we may re-write this ...
equation in the form

a 2q 82V 2e ay

• where a = is a numerical constant. We are interested in
the solution of this equation in the range M>O, satisfying

* the determined boundary condition at the earth s surface
S= 0. However, it is more convenient to consider not half

'the range C>O but the whole range -<C•<- extending for this
purpose the field of turbulence into the region C<O with
symmetry maintained with respect to the point C = 0. If we

X2v*
assume that a = 2X--zT' the corresponding coefficient in

equation (6) is of the form -T2e

Let us restrict.ourselves to seeking a solution of
equation (6), corresponding to an instantaneous point source
of diffusing substance at time t = 0 at the point z = h.
The initial conditions for the original equations (1) will

.-.4-. .



then take the form

Sq,(z, 0) = £(z -h), q2(z, 0) C 2 (Z -h)

where el, e2 are the probability of positive and negative.
directions of initial movement by the diffusing particle.
For example, particles of smoke being discharged from a
chimney move upwards initially so that in this case e = 'it
e2 = 0. With the explosion of a shell in the air, on the

* other hand, the particles as a rule have no preFerred direc-
tion of initial movement; in this case we should assume
that C1. = C2 = V. The initial conditions formulated for
the function V will thus be

Cc) = v(C, 0) E - - ) , ) = (CC - e=)(C - ), ...I(C)

where E(C) is an improper distribution of probabilities,.
i.e., the function is equal to zero when C<O and equal to
unity when CO.

let us first examine the simplest case of a ground
level source th = Q). in this case the function (<, v)can

depend only on the ratio of its variables = = -Z- and
equation (6) takes the form %V*T

d2V + 2( d d•((2• 1) d( C•••)

(the upper sign applies in the range •>O, the lower when
"M<O). Since the substance diffuses with a final velocity
"u = %v*, at the moment t it will be distributed accordinq to
the limits -Xv*tgz•Xv*t so that VC() can be distinguished
from a constant only when .C<I, and it must be that

1 - 0) = 0 7(+ 1 + 0) = 1. The first integral of the
equation for Y(() takes the form

d.. +• / t - 9(Swhen M>0,

-5-
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a

where C1, c2 are constants of integration which must not be
negative since the density of the diffusing substance
Czt) - = is not negativ-. The expression for

9 dz )Xv*V-5
V(Z) which satisi'es the %,ndi-.ion. when C + (I + 0) has
the form

1 - + when 0< •<1,
'")" 2 k( 1 gL C) when - 1 < • 0.

At the point C = 0 the function 7(ý) has the discontin-
uity V+ 0)- V- 0) 1 - +2 the value of which has

2e
the meaning of that portion of the diffusing substance
existing at the moment t at the earth's surface. This
value does not vary with time and, naturally, may be equal
either to Unity or to zero. In the first case w-e get
C•i= c2 --O, i.e. Y(C) = E(C) which denotes the absence of
diffusion. Rejecting this uninteresting case we will
assume C1 + c2 = 2C. Then in the semi-distribution M<0 the
portion of the diffusing substance • exists the whole time
n yiot varying with time and consequently equal to its initial

• value e2. We thus get c2 = 2&a2, ci = 2ccj.. Finally we
have

1w- - when 0 < t < 1,

* C2(1--I~- when - E•K 0. ....(8)

Here VC(() is continuous at the point C = 0 (since
Cl + E 2 = 1) but the density of the diffusing substance
q(z,t) undergoes a perturbation:

- O, t) 2 2 _ = 2e e
..- 6 Xv*t- +

0 -6-



The existence of this discontinuity is reasonable sincediffusion of the substance at the point • =, at which the

0 frequency of dispersion a = 2-7 is infinitely great, is
extremely difficult. By analogy the absence of discontin-
"uities in the function 7(C,-) at the "fronts" I•[ = . is
explained, i.e. the equality to zero of the probabilities of
finding the diffusing particles at points z = + %v*t. In-
deed each particle discharged from a source z = 0 almost
certainly undergoes dispersion while still near the source
and tonsequently does not reach the "front".

When e, = 1, a- = 0 all the diffusing substance at any
moment in time is in the half range z>O so that this case
"corresponds to the condition of "reflection" of the substance
from the earth's surface. Then

q(z, t) 0 • z • XV*t (9)

The character of distribution of the substance in height
depends hiere essentially on tho ie .... on t1..

ratio %, the size of the vertical fluctuations .of wind speedQto the friction velocity. Theoretically -there are two con-
ceivable forms of "front" for the diffusion of the substance.
if %>2Y0-•.8, i.e., if e>I, then when approaching the "front"
the concentration of the substance tends towards zero (since

X2 *•% k2 - is then comparatively
the frequency of dispersion a i h enZ

small), so that the "front" does not appear as a surface of
sharp discontinuity. But if %<2%, i.e. Z<1, then when
approaching the "front" the concentration increases (since
the frequency of dispersion under these conditions is com-
paratively small), so that the "front" appears as a surface

. of sharp discontinuity. Under actual conditions in the
grou!nd layer of the atmosphere it appears that the first of
these cases is realised, i.e. the value 0>1 applies.

In the presence of a continuous line source of diffus-
ing substance perpendicular to the wind direction, and ne-
glecting horizontal dispersion in the wind direction, the
formula fox the concentration is found by replacing time t
in (9) by j, where x is the co-ordinate along the wind
direction and U is the wind speed, considered constant. We
thus get

0-7-



oq q(x, z) = i+~0 •z+ U °

The vertical profiles of concentrations at various dis-
tances x from the source are seen to resemble one another
and their form is characterised by the function

S(1•.-" + - the graph of which with values
-= 1, is show'n in Figure 1.

2. Diffusion From an Elevated Source

The solution of equation (6) under arbitrary
inizial conditions 17(C,O) = )(C) is supplied

by the Riemann formula, which for the given equation has the
form

27CC (t = -~vC,. , 0) + (C+ rV CC V~; C + V, 0)

*1 '*I Y• L]-"r T, '; C, 0,
+- 2

Here v(C, -c; C', is the Riemann function, cha::ac-
terising the influence of a single "impulse" applied at thepoint C at moment -c' which develops at the point C at
moment ->c'. In accordance with ecuation (6) the distur-
bar es propagate with unit (dimensi6nless) speed, so that
the Riemann function differs from zero only when

' [ As a consequence of the independence of the
coefficients of the equation and time, it (the Riemann func-
tion) depends only on the difference of the variables -c and
1'. Moreover, according to its meaning it cannot depend

on the value of h, which enters into the scales of measure-
ment of length and time, i.e., it can only depend on the
ratios of its variables. Consequently, the Riemann func-
tion in our case must take the form

0 -8-



where V(•,') differs from zero only when jT - ('I • 1.

aMoreover,) from considerations of symmetry it must be
that v(- , )= v(,

For V' and -' the Riemann function satisfies an equa"
tion linked to (6) i.e. obtainable from .6) by substituting

-', c' for C, - and changing the sign before the last term.
For V(ý, Q') this expression takes the form

_._V • 5•r; (A ; a .c)(8 ,aV ) o
+ + -- ',--= .

For C A V' and -c X T' when • and c the Riemann function
*satisfies equation (6). giving for V(ý, C') an equation
differing from that obtained above by alteration of the
positions of ( and C'.. The difference of these two equa-
tions has the form

2v ov /1 + _V o.v- a-,-. + 2f�l - + .'... 0ii)

The required solution of this equation is clearly determined
by the known conditions in the characteristics o: equation
(6) i.e. in straight lines r - = + (• - or ( - C=
+1.

The indicated conditions for the function V(C, (') take
the form

-loqV(ý. C + 1) E dlooV(ý + 1, r) _:"

whence aie obtained the following values of the Riemann
function for the characteristics

when • > 0,

V(, + 1, 0)= V (, C + 1) when t < - ,

0 when- C• 9 • 0.

-9-
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Hence, in particular, it follows that the function
V(f, V') is symmetrical with respect to its variables.

The particular solution (8) found above of ecua ion (6)
S0 immediately permits determination of the values of t>e

Riemann function V(ý, ý') when C = 0. Actually, substi-
tuting in the Riemann formula (10) the initial conditions
(7) we get after simple re-arrangement with ý<l + r;

* rCc, •) . -) - 8)v(5, )o

..• ---- eI..(3

Proceeding in this formula to the limit where h -0 we
are satisfied that V(t, 0) is the item in solution (8)

0 corresponding to a ground instantaneous point source of the
admixture, which has the coefficient & Eliminating2
this item in formula (8) we obtain

v( 0) v(0 C) C14)

" The complete expression for the Riemann function will
* be sought in the form

v(4, c') = ! ll + ' + IW(z), z
+ +' 4ii'

This expression possesses the requisite properti's of
symmetry v(t, i')= V((', 0) = V(- t, - t'). By the char-
acteristics t - =I + 1 the first factor is transformed
into expression (12), while the variable Z of the functionW is zero, so that W(O) = 1. The area of determination

P(. • ..- d



[, ('f • 1 of the function V(ý, •') naturally breaks _nto
three parts in which the function w(Z) can be determined by
difference (Figure 2.). In the first place it allows us
to distinguish the areas in which ý and ý' have the same
signs, from areas in which the signs of ( and ý' are diff-
erent. In the second place, for the characteristic

1- at points ( =.0 and t = -1 the Riemann function
is not analytical and since the properties are distributed
along the characteristics, it is possible to anticipatebreaking of the analyti'cal ability of the Pýiemann function
at the characteristics C' + ý = + 1 which separate at the
part of the area w.here the signs-of ( and t' are alike.
Therefore we consider three zones

iI It + V'1 < 1, W' 0 O,
III It - t1I :g I, It + t1I g I, t•' g 0.

Substituting (15) in (11), in zone I we obtain for W(Z)
the equation

z(z - 1) 2 W" + (z - 1)(2Z - i)vj' -,
2W = 0.

In addition it is necessary to choose a solution of the
ecuation, satisfying the condition W(O) = 1. in zone II
for '@'(z) such an equation is obtained and it is necessary
to choose a solution bordering on the first zone 'Z = 1)
coincident with the solution for the first zone, and more-
over satisfying the condition .1(- = 1) emerging from com-
parison of formulae (14) and (15). In zone III for W(Z)
the equation obtained is.

z 2 (z - 1)w" + z(2z - 1)W,' + 2w = 0,

the solution of which must satisfy the conditions W(- •) , 1
and W(Z) = O(Z-6) with Z 0 _ 0. Using the formulae for the
analytical continuation of the hypergeometric functions we

.obtain

0
-11I-
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(1 - Z )-,- . ( C, i + F; I, Z ) .in. zone .I.,

""(2 L (z - 1 (w (z ) + -* l~ r 2 T T •- . z?- % - 2F' - C, - ; 1 - 2 &; z z.i•l •n zone 11 P
I w 1 1)=j,(7 e 1 2& : 2cL"LTz)F(- , -W; T- ; in zone III.

(16)

Here a>F., ' , Z; z) is the symbol of the hypergeo-. m fric function. -or.ul.me (15) - (16) specify the deter-
mination of the Rieemann function quoted in reference [1].
Together with formula (13) they give a solution of equation
(6? for the initial conditions (7). -According to (13) this
solution with C<1 - r is equal to zero; at the point
S= 1 -.- C (the lower diffusion "front" of the substance) it
has a discontinuLty of value e2V - in the interval
1 -9 • • < 1 + r it is determined by the formula

+ + Z7e

while at the ooint C = I + - (the upper diffusion "frontu of
the substance) it has a discontinuity of value zlV• + i,

* and with C ý 1 + r is equal to unity.

The latter is demonstrated in the following way. When
> 1 + -r formula (13) is superseded by the formula

C(a, V) C1
. l •vY¥, I¥j - - C,

S+ 2e (i•. v"€) "C I ) -1

f . .- 12-

1 . .. * :; " ..... . . .



Differentiating this equation for - and using condi-
tions (12) and equation (11), we are convinced that
37( _I 0. At the same time Z(C, 0) E 1 when C k 1.

0 Consequently 7(C, -r) when C • 1 + - similarly equals unity.

So far we have not touched upon the question of extreme
conditions for concentration of the diffusing substance at
the earth's surface. Whhen - < I this question does not
arise, since the substance issuing from the source has not-
yet reached the earthis surface. The solution of (13) is

. here the probability distribution. The presence of rapid
1 changes in the function - (, -) at the points C = I + -

implies that at the ufronts", which are being propagated
* from the source upwards and downwzrds, there exists a finite

Squantity of sibstance: at the "front" which is movinq Dp-
wards there is a proportion of the substance sz(1 - c)-#
diminishing with time according to-a power law; at- th•

"* "front" which is moving downwards, there is a proportion of
the substance e2(l - -6, diminishing to zero with the
approach of the "front1 towards the earth's surface (pro-
gress of the particles towards the earth's surface is diffi-
cult since the frequency of distribution is increasing here
without restriction).

When -, > 1 the solution obtained does not show the
probability of distribution and consequently does not des-

Scribe in any way the distribution of the substance. For
proof of this it is sufficient to determine the value V(0, 9)0 when -, > I which is completely specified by the function
1V(O, K1 V(', 0). Applying (13) and (14) convinces us
that "V(0, C ). 0 • with -6 •, which proves the statement put
forward. It is possible to shew that equation (6) has no
solution describing the distribution of the substance for an
instantaneous point source, for which the diffusion of the
substance would be through the particular point C = 0 or for

* material accumulating at that point. This situation is
completely analagous to the position for a parabolic equa-
tion of diffusion with diffusion coefficient k(z) = xv-z
which also has no solutions describing the distribution of
the substance under the conditions of complete or partial
absorption of substance at the point z = 0. At the same
time we can obtain a physically understandable solution of
equation (6) when -. > 1 by introducing the condition of
reflection of the diffusing paxticles from the earth's sur-
face. For that it is necessary, to add to the solution of
(13) a solution corresponding to the virtual source of
diffusing substance at the point z = - h, i.e. satisfying
the initial conditions

qi(z, 0) = 2b(z + h), q2(Z, 0) =ib(Z +

O -Io-



which can be re-written in the form

~(p E E(t' + 1) M~(C = (e . - 2)6(C + 1).

Applying considerations of symmetry, it is easy to seechat under conditions of reflection the probability cistri-bution differing from zero only when C > 0, should be dci..er-mined by the formula V 7(- C, -) where j(, sthe function determined above. With 1 • 1 this distribu-tion does not differ from , -) but :ith -c > 1 a diffe-rence will only occur in the region 0 C • -T in whicht the influence of a "reflected wave" is felt. At the sametime the portion of the ubstance a th'he-.-usin-g susac -at "front
of the reflected wave" equals zero.

The results obtained permit us to make calculationsrelating to the solution of concrete problems. A, anexample let us calculate the concentration of the substanceat the earths surface with, an instantaneous point source atheight h discharging all the substance upwards. Assumingthat the substance is not absorbed by the earth's surfaceand a plying the preceding reasoning, we must suppose (when-v > 1} that:-

q(O, t) 1 [ L 0, )

where 7(t, r) is determined by formula (13). The lastexpressioa can be put into thle form
I I'

q (o, t)= j--2 -

where

+ .

After simple calculations we obtain

)C

q(O, t) 2e -
h -.14.

..................... O



4ith h- 0 the same result is obtained from this form-
ula as by formula (9), as it should be.

Let us consider a chimrv•y ar -eight h uniformly dis-

charging smoke at neutra- toraiure v~ith velocity c g per
unit time. Assuming the smroke is finely divided (so that
its gravitational sttLinj can bQD ignor'ai) , neqlecting
chanr.es in wind speed U with h,Žiýht and tLZu2*-8 t mixing
along the wind directon -we may !-alculate -;ne concentration
according t. t4he formula

q(xV y, Z = c- ]t)C - - L- -- dt.

" ae e x, y are the horizonta, -o-ordi.-,ates (x, is direc-
tion of wind), and k the coefficient of ;-oizontal. mixing
in the direction y. In particula-, a;.,p.ying (17), we
obtain a formula for the consentratio:n, fro 0 the chimney at
the earth's surface in the direction of t'-,he wind:

q(X, o, 0) Sý! l7,1• ••-•, v
,h ÷- $F ' • Uh " ()

:he abzciss-a of the maximur, of this function is pro-
portiornl to h, anc the value of the iaxi.u_. is inversely
prooort-.o'a. to- h". iigure 3 sho,.,s the yzaoh. of the uni-
versal funztion - i) (• + 1) when e = 4, 1, 4 ,
chLracterising the form of the concentration distributlon
at the earth's surface in the wind direction.

Let us now brie"y consider the case where the diffus-
ing substance is absorbed by the earth's surface. In this
case the extreme condition q = 0 should be formulated not
with z -- 0 but with z = z 0 (iozohness length). Reckoning
the height z from the plane zo we must suppose
a=2 -Fir' so that the function V((, r) must be deter-

z• za2V' (327 2

0 . 19)

The Riem•nn function of this equation %-.ill take the
folm,
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,0 (0o

The determination of- this function and solution of
Pquation (19) under the given -nitial and extreme conditions
can be achieved in an analogous manler to th.lt stated above,

3. Diffusion in a Thermally Heterogeneous Ground
Layer of A•i-

A turbulent syste.m in a thermally heterogeneous
ground layer of air is characterised by three dimensional
parameters: v*, and -9- where q is the vertical tur-.

bulent stream of heat; cp and p, the specific hea' and.
density of air; g, the accelerating force of gravity; and
To, the normal temperature of the grbund layer of air (see
for example [3)). From the indicated parameters it is
possible to form a length scale

L 
=

op

In accordance with considerations of the dimensional
parameter of turbulence u and a, ozcurring in the eq~uation
of diffusion (3), it is possible to write them in the form

u =Xv*.I(. a = X"v*(') .... (20)

where 9±(C) and 92(e) are certain univers:i functions. In

the particular case of indifferent stratification ofzthe air
scale L becomes infinitely large while the variable - of the
functions 4. and y2 becomes zero, so that for agreement with
formula (4) (corrected for a system with indifferent strati-
fication) we must assume 91(0) = P2(0) = 1.

It is possible to determine the function 9(1) by
S making use of the e,.,brium, etionof A urbulent energy

(see for example £4)"j which for the coefficient of turbu-.
lence k leads to the expression

Jo -16-



k ~~Ri s 2
X P.

where I is the scale of turbulence (mixing length in the

Pra-ndtl sense), Ri is the Richirdson number and Ri its

critical value. The value - is proportional to the mean
square velocity of the turbulent fluctuations, i.e.
Hence, applying the condition 9o(O) = 1, we obtain

9 [I Ri. AY -l Ri. .... 6 (22) •

in order to determine the function w2•), we examine
th.h steady-state solution of equations (2), which arises
from the conditions

Q= const, 2aQ = u-uq.

0The right-hand side of the last equation may be re-
written in the 'approximate form - u 2-Z, so that the function-

,(z) changes sig-iificantly more slowly than q(z). The idea
of this simplification is to ignore the vertical stream of
diffusing substance which occurrs when the concentration
g9adient of the substance is zero and which is , consequence

* of a difference in the intensity of turbulent fluctuations
of velocity in different layers of air (the presence of such

a stream of substance is an-alogous to the effect of thermal
diffusion). With the indicated sim'plification, by applying
(20) we can write a steady-state solution of equations (2)
in the forin

oZ xv*Z yp.(z/L"

According to the theory of similarity for a stationary
turbulent system in a thermally heterogeneous ground layer
of air (see for example referen.ce [32) it must be that

0" 17



q(za-) - q(zt) Q f "

where f(c) is a* universal function which is linked with the
Richardson number by the relation

. Ri
• ~~~Ri, z\Z\*

Consequently we obtain

woos. ('23)

and equation (3), by calculations using equations (20) and
(23), becomes

- ,." ... - ' " - - ." . ... . .... (24)

when the dimensionless variables t C Z are intro-

duced.

For the analysis of this e.uation it is "ssantial ta
know the nature of the function f' ()o W'e use the equations
of motion and flow of heat for a steady-state system in the
ground layer of air, which have the fozm

dz dz c" _

Here U and T are the average velocity and ter.erazure,

and c( = 1 From these equations and deterir~inatIon of theicr"

Richardson nunber we obtain k = Sv'L/'(•). Substituting
this formula in (21) and determining . (in the case of stable
stratification to which our present discussion is confined)

O -18-



we f-Ind frcom th'*-e f-ýOrrula

La usSed in the Z gz er i VAC- o conc-rroence with
aex peIi m e jta1d:- 4ý ihold 0 UL -Io ~ ( t-he alge-.
braic- expression

From this ezuation' it flosthatZ" wi t l < i then

M + aC and ait G -~ ymtot4ca Lly

+ to W' c,-, ~-.1 fQ.101.o'ing 1--, t-n ormnul~ae
correspoda ':Or Ile functi-ons (23)

T- 1" 4-Lc() I ~~-

when C- i) '2, 92 (C

T!7us for small' va'ues ofE C the -functilons Q.,C nd cp2 are
extrlemaly c"'ose to unity and the acua:ti.on- for: 'a~kes the

s -Fe orm, as in the case ofindfeezsr~:c in
Wit~h C %the -fluct-uati1on veloci~ty (and conseq'iently the
volocit"y of (1i-palsion. o. th. ustce ) creC~asGes L'
while the frequency of dispersion decreases as ~ ;the

coeA.A.e-lat ofý diffu5Lion' te-d ods a constant value,
2a

In order '6o es'ablisa thle para~matars of equation (24),
we introduce instead of C a new independent variable

-19-



whih oz m-. Iv--. ues oi C s~ th1 fo:. - and f oz

'72

:.'4oteovc~:, the :fUnction , g() is para'ot:6.ca'ly repro-
ser'tezi by ;re o uk

g(x~ 0 x V.-0 0 -z 0 •x •~

Fol Smnall values Of_ r C, gr~) a, nd :or large valuIes

0 f a asym 0otiay 0 (ri). C ~ a 11 Y ) , r* graph OAf thle ý'unc-
tio g~~)is shown in Figure 4.

Integration of eauat ion (26) is posbeby the use of
Methods u-F Oiatin

USSR Acacdemy of Sciences Received

Institut~e of Physic.s of the Atm,,osphele 13 July 1956.
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